
1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2881147, IEEE
Transactions on Services Computing

1

Achieving Efficient and Privacy-Preserving
Multi-Domain Big Data Deduplication in Cloud

Xue Yang, Rongxing Lu, Senior Member, IEEE, Jun Shao, Xiaohu Tang, Member, IEEE and Ali A.
Ghorbani, Senior Member, IEEE

Abstract—Secure data deduplication, as it can eliminate redundancies over encrypted data, has been widely developed in cloud
storage to reduce storage space and communication overheads. Among them, the convergent encryption has been extensively
adopted. However, it is vulnerable to brute-force attacks that can determine which plaintext in a message space corresponds to a given
ciphertext. Many existing schemes have to sacrifice efficiency to resist brute-force attacks, especially for cross-domain deduplication,
which is inevitably contrary to practical applications. Moreover, few existing schemes consider protecting the message equality
information (i.e., whether two different ciphertexts correspond to an identical plaintext). To address the above challenges, in this paper,
we propose an efficient and privacy-preserving big data deduplication scheme for a two-level multi-domain architecture. Specifically, by
generating a random tag and a constant number of random ciphertexts for each data, our scheme not only ensures data confidentiality
under multi-domain deduplication but also resists brute-force attacks. By allowing only the agent and cloud service provider to perform
intra-deduplication and inter-deduplication, respectively, our scheme can protect the message equality information from disclosure as
much as possible. Detailed security analysis shows that our scheme achieves privacy-preservation for both data content and the
message equality information and data integrity while resisting brute-force attacks. Furthermore, extensive simulations demonstrate
that our scheme significantly outperforms the existing competing schemes, especially the computational cost and the time complexity
of the duplicate search.

Index Terms—Secure data deduplication, cross-domain deduplication, brute-force attacks, message equality information.

F

1 INTRODUCTION

U NDER big data-driven society, data deduplication technique
[1] has been widely developed in cloud storage because it

can significantly reduce storage costs by storing only a single copy
of redundant data. Indeed, data deduplication can reduce storage
costs by more than 50% in standard file systems and by more
than 90% for backup applications, and these savings translate into
substantial financial savings to cloud service providers and users
[2]. However, considering security and privacy concerns of out-
sourced data, users are likely to encrypt data with their own keys
before outsourcing. This impedes the cross-user deduplication
since an identical data will be encrypted into different ciphertexts
by different users’ keys, i.e., it is challenging to identify duplicates
over different ciphertexts. Thus, how to efficiently conduct data
deduplication over encrypted data becomes a pressing issue.

Convergent encryption [3] provides the first viable solution to
allow deduplication on encrypted data, which is formalized as the
message-locked encryption later in [4]. It encrypts the data with
the convergent key derived by computing the cryptographic hash
value of the data itself. Since the encryption is a deterministic
symmetric encryption algorithm, identical data will generate the

• X. Yang and X. Tang are with the Information Security and National
Computing Grid Laboratory, Southwest Jiaotong University, Chengdu,
China, 610031, and X. Yang is also with the Faculty of Computer Science,
University of New Brunswick, Fredericton, Canada, E3B 5A3 (e-mail:
xueyang.swjtu@gmail.com, xhutang@swjtu.edu.cn).

• R. Lu and A. Ghorbani are with the Faculty of Computer Science,
University of New Brunswick, Fredericton, Canada, E3B 5A3 (e-mail:
rlu1@unb.ca, ghorbani@unb.ca).

• J. Shao is with the School of Computer and Information Engineering, Zhe-
jiang Gongshang University, Zhejiang, China, 310018, and also with the
Faculty of Computer Science, University of New Brunswick, Fredericton,
Canada, E3B 5A3 (e-mail: chn.junshao@gmail.com).

Corresponding author: R. Lu (e-mail: rlu1@unb.ca).

same convergent key and ciphertext, which achieves deduplication
on encrypted data. However, the convergent encryption is vulner-
able to brute-force attacks due to its deterministic property [5].
To resist such attacks, some server-aided encryption schemes [5],
[6], [7] have been presented. In these schemes, a domain or tenant
(e.g., a company or university) deploys a dedicated key server
to help affiliated users to generate the convergent key and the
corresponding tag through an interactive protocol. Unfortunately,
since key servers in different domains randomly select different
secret keys, cross-domain deduplication is infeasible, which dra-
matically reduces the effectiveness of data deduplication. To sup-
port cross-domain deduplication, an inter-deduplication algorithm
has recently been constructed [8]. Since only the encrypted data
uploaded by the first user will be stored in the cloud, to ensure
that the encrypted data can be correctly decrypted by users with
ownership, the number of generated ciphertexts is linear with the
number of domains. Thus, the scalability issue will inevitably arise
when the number of domains explodes, which will lead to massive
computational and communication overheads for users and the
cloud service provider.

Moreover, the message equality information of outsourced
data (i.e., the information about whether two different ciphertexts
correspond to an identical plaintext) may also leak the content
of encrypted data to some extent [2]. Although this information
disclosure is inevitable in data deduplication, we hope to minimize
such information leakage. Recently, two solutions [9], [10] have
been drawn to achieve this goal. The crux of both schemes is to
permit only the deduplication operator to know such information.
The first scheme [9] employs an additional trusted server to
complete the duplicate verification. However, the assumption that
the trusted server is always online and will not be compromised is
too strong to be accepted in practice [11]. The second scheme [10]

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:12:13 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2881147, IEEE
Transactions on Services Computing

2

seems a good candidate because it protects the message equality
information by introducing a technical method rather than an
additional trusted server. Besides, this scheme efficiently achieves
cross-domain deduplication and resists brute-force attacks at the
same time. Unfortunately, this scheme can only support the cross-
domain deduplication for two different domains.

As described in [12], secure cross-domain (or cross-user)
deduplication schemes are evaluated in terms of two factors: se-
curity properties that each scheme provides and system overheads
incurred on the cloud service provider and users. However, as far
as we know, existing related schemes cannot efficiently achieve
the strong confidentiality of outsourced data while resisting brute-
force attacks. Thus, in this paper, under the similar two-level
multi-domain architecture [8], [10], we propose an efficient and
privacy-preserving multi-domain big data deduplication scheme
in cloud storage. The main contributions of this paper are three
aspects:

• First, we propose a secure multi-domain deduplication
scheme that can support data deduplication not only in the
same domain (called intra-deduplication) but also across
multiple different domains (called inter-deduplication).
Specifically, the proposed scheme generates the random
convergent key and the random tag based on the bilinear
pairing technique [13] to ensure data confidentiality. The
proposed scheme only needs to produce a constant num-
ber of random ciphertexts to ensure that the outsourced
encrypted data can be correctly decrypted by users with
ownership. Moreover, the proposed scheme achieves that
only the cloud service provider can perform the inter-
deduplication by comparing random inter-tags derived
from the Boneh-Goh-Nissim cryptosystem [14].

• Second, to improve the time complexity of duplicate
search, we construct a deduplication decision tree based
on the B+ tree [15], which works well for the big data
storage system. In particular, the length of plaintext can be
used to represent the keyword in the B+ tree.

• Third, we analyze the security of the proposed scheme and
demonstrate that it can achieve strong data confidentiality
and data integrity while resisting brute-force attacks. Be-
sides, extensive performance evaluations justify the effi-
ciency of the proposed scheme in terms of computational,
communication and storage overheads.

The remainder of this paper is organized as follows. We will
introduce the system model, threat model and design goals in
Section 2, before recalling bilinear groups of composite order,
the Boneh-Goh-Nissim cryptosystem and B+ tree in Section 3.
Then, we present our scheme in Section 4, followed by its
security analysis and performance evaluation in Sections 5 and 6,
respectively. Related work is discussed in Section 7. We conclude
our work in Section 8.

2 MODELS AND DESIGN GOALS

In this section, we formalize the system model and threat model
used in this paper, and identify our design goals.

2.1 System Model
Similar to [8], [10], our system is a two-level multi-domain
deduplication model, which provides the intra-deduplication and
inter-deduplication. More specifically, the first level contains a

number of domains D = {D1, D2, . . . , Dn}. Each domain Di

corresponding to an organization (e.g., an enterprise or a univer-
sity) contains a group of affiliated users (e.g., staff in an enterprise
or faculty and students in a university) and employs an agent
to complete the intra-deduplication. The second level includes a
cloud service provider, which conducts the inter-deduplication.
Besides, a key distribution server is introduced to set up the
system. Fig. 1 illustrates the system architecture of the proposed
scheme and the details of each entity are described as follows.

• Key distribution server (KDS): The KDS is responsible for
generating different private keys for users from different
domains and a secret for the cloud service provider to
perform the inter-deduplication.

• Cloud service provider (CSP): The CSP offers storage ser-
vices for users. Although the CSP seems to have abundant
storage space, the corresponding costs of the management
and maintenance for big data are relatively expensive.
Hence, the CSP prefers to conduct the inter-deduplication
over outsourced data from all domains to save costs by
storing only one copy.

• Users: Users from the same domain receive the same
private key from the KDS, on the contrary, users from
different domains possess different private keys. Based
on the received private key, users can generate a random
convergent key used for encrypting the data and an intra-
tag used for deduplicating.

• Agent (Ai): In order to improve the efficiency of duplica-
tion search and resist an online brute-force attack launched
by malicious users, an agent Ai located between users and
the CSP is hired by Di for performing intra-deduplication
and transforming a random intra-tag into a random inter-
tag.

The overall workflow is roughly described as follows. When
a user U from Di wants to upload data m, U generates a
random intra-tag and sends it to Ai. Then, Ai performs the intra-
deduplication based on the received intra-tag. If a duplicate is
found, Ai returns the corresponding feedback. Otherwise, Ai
transforms the intra-tag into a random inter-tag and sends it to
the CSP for inter-deduplication. Note that only when the CSP
does not find a duplicate, U needs to encrypt m and upload the
corresponding ciphertext.

!"#$%&'()*+,(&-)#*+%()&.!/01

23(45&6 .!"1

7'()'

8#9:+4&6&.#"1 8#9:+4&n .#$1

;(<&%+'5)+=$5+#4&'()*() .;8/1

23(45 4 .!$1&

8#9:+4&i .#%1

!! !!

>45()?%(%$-"+,:5+#4

>45):?%(%$-"+,:5+#4

23(45&+ .!%1

7'()' 7'()'

Fig. 1: System model under consideration

2.2 Threat Model

In our system, the KDS is assumed to be completely trusted
and would hardly be compromised by any adversary because it

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:12:13 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2881147, IEEE
Transactions on Services Computing

3

only participates in system setup. Similar to the existing literature
dealing with the security in cloud storage [16], [17], the CSP
and Ai, considered as honest-but-curious, will honestly follow the
underlying scheme, but are curious about contents of outsourced
encrypted data. Specifically, based on the background knowledge
about the plaintext space, the CSP would collude with Ai to guess
the content of a targeted ciphertext by launching an offline brute-
force attack. Furthermore, the encrypted data stored in the CSP
may be altered due to physical failures [18], [19] or monetary
reasons [20].

Similar to [8], users are also assumed to be honest-but-
curious. Concretely, they will not frame the CSP or corresponding
Ai by uploading invalid data. However, they may be interested
in obtaining the content of encrypted data without ownership.
Besides, if a malicious user (corrupted by the adversary) knows
the plaintext space, he/she would try to launch an online brute-
force attack by repeatedly executing the data upload procedure to
guess the content of the targeted ciphertext. Note that users would
not collude with the CSP or Ai due to their own privacy concerns
and the reputation of the CSP or Ai [21].

Besides, we assume that the users from Di connect with the
corresponding agent Ai and all agencies connect with the CSP
through secure channels.

2.3 Design Goals
Based on the threat model, we intend to achieve the following
goals in the proposed scheme:

• Data confidentiality. There exist two kinds of data con-
fidentiality in our model. One is related to the semantic
security of encrypted data and tags, i.e., any adversary
even corrupting the CSP and Ai or unauthorized users
cannot feasibly extract any information about a plaintext
from its ciphertext or tag. The other is related to the mes-
sage equality information, i.e., any adversary excluding
the CSP (Ai) cannot decide whether two given tags from
different domains (the same domain Di) correspond to the
same data or not.

• Data integrity. In the design of secure data deduplication,
only one copy will be stored in the CSP. Since this unique
copy may be altered due to some physical failures or
monetary reasons, the proposed scheme should provide
data integrity to ensure that users can verify whether the
downloaded data are modified or not.

• Brute-force attack resistance. With the background knowl-
edge of the plaintext space, any adversary even corrupting
the CSP or Ai cannot determine which plaintext corre-
sponds to a specific tag and ciphertext through an offline
brute-force attack. It is worth noting that the CSP or
Ai can determine whether two ciphertexts correspond to
the same plaintext by comparing received tags, but they
cannot determine which plaintext in the plaintext space
corresponds to these ciphertexts. Besides, the malicious
user (corrupted by the adversary) tries to guess the content
of the targeted ciphertext by launching online brute-force
attacks. Thus, the proposed scheme should also try to resist
such attacks.

• Efficiency. Apart from security requirements, efficiency is
the most important metric for data deduplication [16]. Ac-
tually, applying secure deduplication would lead to some
unavoidable costs for users and the CSP [12], e.g., tag

generation, duplication search, and verification. Therefore,
achieving the efficiency of computational, communication
and storage overheads is also our design goal, especially in
today’s big data-driven society. Meanwhile, facing a vast
volume of data, the time complexity of duplication search
should be reduced as much as possible.

3 PRELIMINARIES

In this section, we outline the bilinear groups of composite order
[13], Boneh-Goh-Nissim cryptosystem [14] and B+ tree [15],
which will serve as the basis of the proposed scheme.

3.1 Bilinear Groups of Composite Order
Given a security parameter κ, a composite bilinear parameter
generator Gen(κ) outputs a tuple (p, q,G,GT , e), where p and q
are two κ-bit primes, G and GT are two finite cyclic multiplicative
groups of composite order N = pq, and e : G × G → GT is a
bilinear map with the following properties:

• Bilinear: e(xa, yb) = e(x, y)ab for all x, y ∈ G, and
a, b ∈ ZN .

• Non-degeneracy: If g is a generator of G, then e(g, g) is a
generator of GT with the order N .

• Computability: For all x, y ∈ G, there exists an efficient
algorithm to compute e(x, y) ∈ GT .

Some related complexity assumptions are given below. For
more comprehensive descriptions, refer to [22], [23].

Definition 1. (Computational Diffie-Hellman (CDH) Problem).
The CDH problem in G is defined as follows: Given g, ga, gb ∈ G
for unknown a, b ∈ ZN , compute gab ∈ G.

Definition 2. (The n-th Bilinear Diffie-Hellman Exponent (n-
BDHE) problem). The n-BDHE problem is: given a vector of 2n+
1 elements

(
h, g, gα, g(α

2), . . . , g(α
n), g(α

n+2), . . . , g(α
2n)
)
∈

G2n+1 for unknown α ∈ ZN , compute e
(
g, h)α

n+1 ∈ GT .

It is worth noting that the input vector is missing the term
gα

n+1

so that the bilinear map seems to be of little help in
computing the required e

(
g, h)α

n+1

.

Definition 3. (Decisional n-BDHE problem). The decisional n-
BDHE problem is stated as follows: given (2n + 1) elements(
h, g, gα, g(α

2), . . . , g(α
n), g(α

n+2), . . . , g(α
2n)
)
∈ G2n+1 and

R ∈ GT for an unknown random α ∈ ZN , determine whether
R = e

(
g, h)α

n+1

or a random element from GT .

Definition 4. (The (decisional) n-BDHE assumption) We say that
the (decisional) n-BDHE assumption holds if no probabilistic and
polynomial-time algorithm has advantage at least ε in solving the
(decisional) n-BDHE problem.

3.2 Boneh-Goh-Nissim Cryptosystem
The Boneh-Goh-Nissim cryptosystem (BGN) includes three algo-
rithms: key generation, encryption, and decryption. The details are
described as follows.

• Key generation: Given a security parameter κ, run Gen(κ)
to get a tuple (p, q,G,GT , e) as described in Section
3.1 and set N = pq. Randomly choose two generators
g, x ∈ G and set y = xq . The private key is p and the
corresponding public key is pk = (N,G,GT , e, g, y).

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:12:13 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2881147, IEEE
Transactions on Services Computing

4

• Encryption: Given a message m ∈ {0, 1, . . . ,W}, where
W � q, choose a random number r ∈ ZN , and compute
the ciphertext as C = gmyr ∈ G.

• Decryption: Given the ciphertext C and private key p,
compute Cp = (gmyr)p = (gp)m. Let g′ = gp, then
Cp = g′

m. To obtainm, it suffices to compute the discrete
logarithm of g′m. Actually, when m is a short message,
say m 6 W for some small bound W , the decryption
takes expected time O(

√
W) utilizing Pollard’s lambda

method [24].

3.3 B+ Tree

The B+ tree of order f is a very efficient, dynamic and balanced
search tree that satisfies the following properties:

• The root node has at most f children and at least two
children if it is not a leaf node.

• Each non-leaf node with nc children contains nc − 1
keywords: (P0, δ1, P1, δ2, P2, . . . , δnc−1, Pnc−1), where

– δk, k = 1, 2, . . . , nc−1, is a keyword with δk−1 <
δk.

– Pk is a pointer that points to the root of the subtree.
All the keywords pointed by Pk−1 are smaller than
δk, but greater than or equal to δk−1.

– The number of children is satisfied
⌈
f
2

⌉
6 nc 6 f .

• Each leaf node (unless it is a root) must contain nc − 1
keyword and pointer pairs: (δ1, P1, . . . , δnc−1, Pnc−1),
where

–
⌈
f
2

⌉
− 1 6 nc − 1 6 f − 1.

– All data is stored in leaf nodes, and the pointer Pk,
k = 1, . . . , nc − 1, points to the data that contains
the keyword δk.

– Each leaf node has a link to its adjacent sibling,
forming the ordered linked list.

• All leaves appear in the same level.

An example of a B+ tree is illustrated in Fig. 2. Since all data are
stored in leaf nodes, that is all keywords queries have the same
path length (from the root to the leaf), the efficiency of search is
more stable compared to other trees, e.g., the binary search tree
[25] or B- tree [26]. As introduced in [15], the time complexity
of the search operation in a B+ tree is O(logf M), where M is
the number of stored data. Therefore, a B+ tree can be used even
when the data structure is too big to fit into main memory.

3 5

3 4 5 6 71 2

!" !# !$!% !& !' !(

)")#)$Leaf node keyword data

Node 1

)* + * !"

), + , !#

)- + ./00 ./00

Node 2

)" + - !$

)# + 1 !%

)$ + ./00 ./00

Node 3

)" + 2 !&

)# + 3 !'

)$ + 4 !(

Data storage

Fig. 2: A simple B+ tree of order 4 example linking keywords
1− 7 to data values d1 − d7.

4 THE PROPOSED SCHEME

In this section, we present our scheme, which includes three
phases: system setup, data upload, and data download.

4.1 System Setup

In this phase, the trusted KDS generates private keys for users,
a secret for the CSP and the corresponding system parameters.
Specifically, the KDS first runs the composite bilinear parameter
generator Gen(κ0) to output a tuple (N = pq,G,GT , e). Then,
the KDS generates system parameters and private keys as follows.

• Randomly choose two generators g, x ∈ G and two
numbers α, γ ∈ ZN , and then compute y = xq , ν = gγ

and gi = gα
i

for i = 1, 2, . . . , n, n+ 2, . . . , 2n.
• For all users inDi, compute the private key di as di = gγi ,

where i = 1, 2, . . . , n. Note that n is the total number of
domains in system and i is the identifier of Di.

• Choose three cryptographic hash functions: h1 :
{0, 1}∗ → {0, 1}κ1 , h2 : {0, 1}∗ → {0, 1}κ0−1 and
h3 : G → {0, 1}κ1 , where κ1 is the bit length of the
convergent key.

Finally, the KDS sends di to all users in Di and p to the
CSP by secure channels, and publishes system parameters pp =
(N,G,GT , e, h1, h2, h3, y, g, g1, . . . , gn, gn+2, . . . , g2n, ν) .

In addition, based on the published system parameters, each
agent Ai randomly chooses ai ∈ ZN as the private key, and then
computes the corresponding public key gai . Finally, Ai sends gai
to all users who belong to the domain Di.

Note that in the practical scenario, it is important to support
the dynamic addition of domains or users, especially for adding
users, e.g., hiring new employees. The proposed scheme can easily
support the addition of users to the existing domains. Specifically,
suppose that a user U∗ is added to the domain Di, we can
introduce a simple identity verification protocol that allows U∗

to verify the legitimacy to the KDS. If the identity verification is
passed, the KDS sends the corresponding private key di to U∗

through the secure channel. After that, U∗ can upload data in the
same way as the users previously added to Di.

For the addition of new domains, it seems impossible to
increase n (i.e., the number of domains) after the scheme is once
instantiated. However, similar to the concept of initializing arrays,
we can initialize a relatively large n to reserve enough space
to support the dynamic addition of domains to some extent. For
example, if the number of domains is 10 in the current situation,
then we can set n to 20. The reserved portion can be used for
subsequent domain additions.

4.2 Data Upload

The data upload phase mainly includes four parts: tag generation,
intra-deduplication, inter-deduplication and data encryption / key
recovery. For each user U in Di, where i = 1, 2, . . . , n, when U
wants to upload the data m, U first generates an intra-tag for data
deduplication. Then, the agentAi performs the intra-deduplication
to check the duplicate in the same domain Di. If the duplicate
does not exist, then the CSP needs to further conduct the inter-
deduplication among different domains. Finally, if the duplicate is
found, then U recovers the convergent key generated by the first
uploader. Otherwise, U encryptsm and uploads the corresponding
ciphertexts. The details are described as follows.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:12:13 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2881147, IEEE
Transactions on Services Computing

5

4.2.1 Tag generation
When a user U from Di wants to upload data m, U chooses a
random number rm ∈ ZN , and generates a random intra-tag τm
with the private key di and Ai’s public key gai as

τm =
(
d
h2(m)
i gairm , grm

)
=
(
gα

i·γ·h2(m)+airm , grm
)
. (1)

Then, U sends a message “upload‖(Lm, τm)” to Ai. Note that
Lm is the length of m, which acts as the search keyword of the
deduplication decision tree (DDT) in the inter-deduplication.

4.2.2 Intra-deduplication
Upon receiving the message “upload‖(Lm, τm)”, Ai performs
the intra-deduplication as follows.

1) Based on the private key ai, compute

d
h2(m)
i gairm

(grm)ai
= d

h2(m)
i = gα

i·γ·h2(m). (2)

Then, compute the hash of dh2(m)
i as Tm = h3

(
d
h2(m)
i

)
.

2) Check whether a duplicated copy of m exists by comparing
Tm to previously stored hash values from Di.

• If the same hash value has already been stored, e.g.,
(Tm∗ , Bm∗), then Ai returns “duplication‖Bm∗” to
U . Note thatBm∗ is the ciphertext used to encapsulate
some information of the convergent key, which will be
introduced in Section 4.2.4.

• Otherwise, Ai uses the value dh2(m)
i to generate a

random inter-tag τ̂m based on the BGN encryption.
Ai randomly chooses r ∈ ZN , and computes

τ̂m = d
h2(m)
i · yr ∈ G. (3)

Then, Ai stores Tm in the hash table and sends the
message “upload‖(i, Lm, τ̂m)” to the CSP for the
inter-deduplication, where i is the identifier of Di.

At this point, the intra-deduplication part has only checked the
duplicate among the outsourced data from the same domain, i.e.,
Di. Thus, if the duplicate is not found in the intra-deduplication, it
needs to further perform the inter-deduplication to check whether
the same data has been uploaded by users from different domains.

4.2.3 Inter-deduplication
After receiving the message “upload‖(i, Lm, τ̂m)” from Di,
the CSP performs the inter-deduplication to further eliminate the
redundancy of data. Note that in the intra-deduplication,Ai judges
whether the duplicate exists by comparing hash values. Thus,
the search complexity is very efficient, i.e., O(1). However, in
the inter-deduplication, since inter-tags are random elements in
G generated by BGN encryption, the same data will correspond
to different inter-tags. Thus, the CSP cannot compare the hash
values of inter-tags to check the duplicate. Nevertheless, if the one
by one search method is adopted, the time complexity of duplicate
search increases linearly with the number of encrypted data stored
in the CSP, which will lead to huge search costs, especially for
big data. Accordingly, we construct a deduplication search tree
(DDT) based on the B+ tree for efficiently searching duplicates.
The details are shown as follows.

Deduplication decision tree (DDT): According to the intro-
duction of the B+ tree in Section 3.3, we construct a DDT
of order f , as shown in Fig. 3. In the constructed DDT, the

keyword used for dividing subtrees is the length of the data
Lm, and each leaf node has nc − 1, where

(⌈ f
2

⌉
6 nc 6 f

)
,

pointers to point the stored data that contains the keyword Lm,
i.e., (i, Lm, τ̂m, Bm, Cm). In the inter-deduplication, the CSP
leverages Algorithm 1 to search a duplicate of Lm.

Algorithm 1 Search algorithm in the deduplication decision tree
Function: Search(Lm,node)

1: The search function Search(Lm,node) is started from the
root node, i.e., node = root, and it proceeds to a leaf node
as follows:

2: if node is a leaf then
3: return node
4: else
5: case 1: Lm < δ1 then

return Search(Lm, P0)
case 2: δk 6 Lm < δk+1 then

return Search(Lm, Pk)
case 3: δnc−1 6 Lm then

return Search(Lm, Pnc−1)
9: end if

Note that 1 6 k < nc− 1, the keyword δk is the value of the data
length Lmt . Each non-leaf node contains nc−1 keywords and nc
pointers: (P0, δ1, P1, δ2, P2, . . . , δnc−1, Pnc−1).

Inter-deduplication: The CSP starts checking the duplicate
from the root node by comparing the data length Lm as shown
in Algorithm 1. If the same value Lm∗ is found, then for
the corresponding stored data (j, τ̂m∗ , Bm∗ , Cm∗), the CSP
leverages Algorithm 2 to check whether the duplicate exists
or not. If the data m is a duplicate, then the CSP sends
“duplication‖linkm∗‖Bm∗” to Ai, where linkm∗ is the logical
link to the data Cm∗ . Otherwise, the CSP sends “data upload”
to Ai. The details of the inter-deduplication are described in
Algorithm 2, wherein lines 5 to 7, the CSP needs to check whether
i = j holds. The reason is that if i = j, it means that the received
data (i, Lm, τ̂m) and stored data (j, Lm∗ , τ̂m∗ , Bm∗ , Cm∗) come
from the same domain Di. Actually, the intra-deduplication part
(see Section 4.2.2) has already checked the duplicate in the
same domain Di. Only when the duplicate is not found, i.e.,
m 6= m∗, the data (i, Lm, τ̂m) will be sent to the CSP for inter-
deduplication. Hence, when i = j, we can judge that the data m
and m∗ are different without the further verification. Fig. 3 shows
an example of searching the duplicate.

Corollary 1. (Correctness of inter-deduplication) Suppose two
inter-tags τ̂mk and τ̂mt are from different domains Di and Dj ,
where i, j ∈ {1, . . . , n} and i 6= j, respectively. The equation

e(τ̂mk , gj)
p = e(τ̂mt , gi)

p (5)

holds, if and only if mk = mt.

Proof. Since

{
τ̂mk = d

h2(mk)
i · yrk = gα

iγh2(mk) · yrk

τ̂mt = d
h2(mt)
j · yrt = gα

jγh2(mt) · yrt

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:12:13 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2881147, IEEE
Transactions on Services Computing

6

!"# !"$% !"&'

() (* (+ (,-)

./ 01"$
/2"$

/3"$

!"4 !"& !"5

67

!"# !"' !"4% !"8% !"9$!":%

6)

!"$!"8 !"9

6;<-)

!"4 !": !"$$!"=

67

6;<-)

!":% !"4& !"#9

67 676;<-) 6;<-)

>/ 01"8
/2"8

/3"8

./ 01"9
/2"9

/3"9 ?/ 01":%
/2":%

/3":%
@/ 01"#9

/2"#9
/3"#9

A/ 01"=
/2"=

/ 3"=

!"B
C !"#

!"4
D !"B

C !"&

!"4 D !"B
C !"&%

1) Check whether A E FG

2) If A H F , then check whether IJ01"=
/KLM

N E IJ01"B
/KOM

N
.

Fig. 3: The deduplication decision tree and an example of searching the duplicate. Given the data (j, Lmt , τ̂mt) from Dj , according
to Algorithm 1, the CSP finds the same value Lmk and obtains (i, τ̂mk , Bmk , Cmk). Then, the CSP executes Algorithm 2 to judge
whether the duplicate exists.

Algorithm 2 Inter-deduplication algorithm

1: For the received data (i, Lm, τ̂m), the CSP calls the function
Search(Lm,node) in the DDT to search whether the value
Lm has already been stored.

2: if the same value is not found then
3: return “data upload”
4: else
5: the same value Lm∗ is found, e.g., (j, τ̂m∗ , Bm∗ , Cm∗),

and then check whether i = j holds.
6: if i = j then
7: return “data upload”
8: else
9: verify whether the following equation holds

e(τ̂m, gj)
p = e(τ̂m∗ , gi)

p (4)

10: if Eq. (4) holds then
11: return “duplication‖linkm∗‖Bm∗”
12: else
13: return “data upload”
14: end if
15: end if
16: end if
According to Corollary 1, Eq. (4) holds, if and only if m = m∗.
That is, the duplicate can be found by verifying Eq. (4).

and gi = gα
i

, gj = gα
j

, we can compute

e
(
τ̂mk , gj

)p
=e
(
gα

iγh2(mk) · yrk , gα
j)p

=e(g, g)α
iγh2(mk)·αj ·p · e

(
yrk , gα

j)p
=e(g, g)α

i+jγph2(mk) · e(x, g)α
jrk·pq

(a)
= e(g, g)α

i+jγph2(mk)

e
(
τ̂mt , gi)

p =e(gα
jγh2(mt) · yrt , gα

i)p
=e(g, g)α

jγh2(mt)·αi·p · e
(
yrt , gα

i)p
=e(g, g)α

i+jγph2(mt) · e(x, g)α
irt·pq

(a)
= e(g, g)α

i+jγph2(mt)

where (a) follows from the condition e(x, g)N = 1 as the order
of the group GT is N .

Based on the above analyses, we can obtain that if and only if
mk = mt, i.e., h2(mk) = h2(mt), then

e(g, g)α
i+jγph2(mk) = e(g, g)α

i+jγph2(mt)

⇔ e(τ̂mk , gj)
p = e(τ̂mt , gi)

p

Note that h2 : {0, 1}∗ → {0, 1}κ−1 is a cryptographic hash
function, and the hash value satisfies h2(mk) < q for the arbitrary
data mk.

4.2.4 Data encryption
/

key recovery
Upon receiving the message “duplication‖linkm∗‖Bm∗”, Ai
forwards “duplication‖Bm∗” to the user U and stores
(Bm∗ , linkm∗) together with Tm, i.e., (Tm, Bm∗ , linkm∗),
where m = m∗. Otherwise, Ai directly forwards the message
“data upload” to U . After receiving the feedback from Ai, if the
message is “data upload”, U performs data encryption operations.
If the received message is “duplication‖Bm∗”, U conducts key
recovery operations. The details are described as follows.

Data encryption: If the message is “data upload”, U encrypts
the data m before outsourcing as follows.

• Randomly choose βm ∈ ZN , set Km = e(gn+1, g)
βm ,

and generate the convergent key ckm as

ckm = h1
(
Km‖m

)
= h1

(
e(gn+1, g)

βm‖m
)
.

Note that the value e(gn+1, g) can be computed as
e(gi, gn+1−i).

• Generate the ciphertext of m asBm =
(
gβm , (ν ·

∏
k∈I

gn+1−k)
βm
)
,

Cm = SKEckm(m),

(6)

where the set I = {1, 2, . . . , n} is comprised of the
identifiers of n domains and SKEckm(·) represents a fast
symmetric encryption algorithm, like AES. Finally, the
ciphertext tuple of the data m is (Bm, Cm).
Note that the ciphertext Bm is used to encapsulate the
random value Km. The idea of computing Bm comes

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:12:13 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2881147, IEEE
Transactions on Services Computing

7

from the broadcast encryption scheme [27], which has
an advantage that the number of ciphertexts is constant
for any set of receivers. Therefore, we can combine
the convergent encryption with this broadcast encryption
scheme to guarantee that the outsourced encrypted data
can be correctly decrypted by users with ownership while
improving the efficiency of computation, communication,
and storage. The details about the performance will be
analyzed in Section 6.

After data encryption, U sends (Bm, Cm) to Ai. Upon receiv-
ing (Bm, Cm), Ai forwards it to the CSP and stores (Tm, Bm).
Finally, the CSP stores (i, Lm, τ̂m, Bm, Cm) in the appropriate
location of the DDT by leveraging Algorithm 1, and sends the
logical link linkm to Ai for storing. That is, Ai finally stores
(Tm, Bm, linkm).

Key recovery: If the message is “duplication‖Bm∗”, then U
recovers the convergent key ckm∗ = h1

(
e(gn+1, g)

βm∗ ‖m∗
)

with the private key di and the data m as follows.

• Let Bm∗ = (B0, B1), compute

e(gn+1, g)
βm∗ =

e(gi, B1)

e
(
di ·

∏
k∈I
k 6=i

gn+1−k+i, B0

) (7)

• Then, U can recover ckm∗ with the data m as : ckm∗ =
h1
(
e(gn+1, g)

βm∗ ‖m
)
. Note that in this case, the data m

is the duplicate of the data m∗, i.e., m = m∗.

The correctness of Eq. (7): Based on Formula (6), the cipher-
text Bm∗ can be computed as

Bm∗ = (B0, B1) =
(
gβm∗ , (ν ·

∏
k∈I

gn+1−k)
βm∗

)
.

We can obtain

e(gi, B1) =e
(
gi, (ν ·

∏
k∈I

gn+1−k)
βm∗

)
=e(gi, gn+1−i)

βm∗ · e
(
gi, ν ·

∏
k∈I
k 6=i

gn+1−k
)βm∗

=e
(
gα

i

, gα
n+1−i)βm∗ · e(g, ναi · ∏

k∈I
k 6=i

gα
i

n+1−k
)βm∗

=e(g, g)α
n+1·βm∗ · e(g, να

i

·
∏
k∈I
k 6=i

gn+1−k+i)
βm∗

where gα
i

n+1−k =
(
gα

n+1−k)αi
= gα

n+1−k+i
= gn+1−k+i.

e
(
di ·

∏
k∈I
k 6=i

gn+1−k+i, B0

)
=e
(
gγi ·

∏
k∈I
k 6=i

gn+1−k+i, g
βm∗

)
=e
(
να

i

·
∏
k∈I
k 6=i

gn+1−k+i, g
)βm∗

where gγi = gα
i·γ = (gγ)α

i

= να
i

.
Accordingly, we can obtain

e(gi, B1)

e
(
di ·

∏
k∈I
k 6=i

gn+1−k+i, B0

) = e(g, g)α
n+1·βm∗ = e(gn+1, g)

βm∗ .

Finally, U deletes the data m and just stores the information
(Tm, ckm, labelm), where Tm = h3(d

h2(m)
i), labelm is the

label of the data m, e.g., the name or feature used for iden-
tifying the data m). The reason for using labelm is to make
it easy for users to identify each data. Note that if m is the
duplicate, then ckm = ckm∗ = h1

(
e(gn+1, g)

βm∗‖m
)
, where

e(gn+1, g)
βm∗ is generated by the first uploader. Otherwise,

ckm = h1
(
e(gn+1, g)

βm‖m
)

is generated by himself.

4.3 Data Download
After a period of time, when the user U from Di wants to down-
load an outsourced datam, U uses the corresponding label labelm
to find the stored Tm, and then sends a request “download‖Tm”
to Ai. After receiving the request “download‖Tm”, Ai finds the
same hash value and get the corresponding link linkm. Then,
Ai returns linkm to U . After that, U can directly download the
ciphertext Cm from the CSP based on the linkm.

Finally, U decrypts Cm with the stored convergent key ckm
and verifies data integrity. The details are introduced as follows.

• U recovers m′ by decrypting Cm with ckm.
• Then, with the recovered m′, U computes Tm′ =

h3(d
h2(m

′)
i), and verifies the integrity by checking

whether Tm′ = Tm holds. If it does not hold, it means
that m has been corrupted, i.e., m′ 6= m.

Note that in our scheme, if a user from Di has previously
tried to upload the data m. After the data deduplication, no matter
whether m is successfully uploaded, Ai has a record of this
data, i.e., (Tm, Bm, linkm). Conversely, if Ai does not store the
corresponding record, then it means that no user in Di has ever
tried to upload the data m, that is all users in Di do not have
the access right to this data. Therefore, users only need to interact
with Ai to obtain the corresponding logical link, which can reduce
the download time to a great extent compared to the interaction
with the CSP.

5 SECURITY ANALYSIS

In this section, we analyze the security properties of our scheme.
In particular, following the design goals illustrated in Section
2.3, our analysis will focus on how our scheme can achieve
data confidentiality and data integrity while resisting brute-force
attacks.

5.1 Data Confidentiality
Data confidentiality of our scheme includes two aspects: (1) The
semantic security of encrypted data and tags; (2) The preservation
of the message equality information. The details are analyzed as
follows.

5.1.1 Semantic security of encrypted data and tags
In our scheme, any adversary even corrupting the CSP and Ai or
unauthorized users cannot feasibly extract any information about
a plaintext from its ciphertext or tag.

First, we analyze that Ai and the CSP cannot obtain the con-
tent from the stored or received data. Specifically, Ai can receive
the data (Lm, τm, Bm, Cm) from the user U in Di. With the
private key ai,Ai can obtain gα

iγh2(m) from the intra-tag τm (see
Eq. (2)). If Ai wants to obtain the data m from gα

iγh2(m), Ai first
needs to overcome the discrete logarithm problem (DLP) to obtain
αiγh2(m), and then deals with the integer factorization to obtain
h2(m). At last, Ai has to compute the one-way hash function

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:12:13 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2881147, IEEE
Transactions on Services Computing

8

to get m. However, the DLP, integer factorization and one-way
hash function have been proved to be computationally infeasible
difficult problems [28]. Hence, it is infeasible to get m from the
intra-tag τm. If Ai wants to get m from (Bm, Cm), Ai tries to get
the random element Km = e(gn+1, g)

βm , which is the crux of
the convergent key ckm = h1

(
Km‖m

)
. However, based on the

n-BDHE hard problem (see Definition 2), Ai cannot obtain Km

from the parameters (gβm , g1, . . . , gn, gn+2, . . . , g2n). Besides,
based on the decisional n-BDHE problem (see Definition 3),
without the private key di, Ai cannot recover Km from Bm (see
[27] for details). Without knowing the randomKm, the convergent
ciphertext Cm is a random ciphertext generated by the symmetric
encryption algorithm, which satisfies the semantic security [4],
[29]. Note that the value Lm denotes the size of the data m, it is a
feature that every data possesses. In general, this value would not
leak any information about the data content. Therefore, Ai cannot
obtain any information about the data m from the obtained data
(Lm, τm, Bm, Cm).

The CSP stores (i, Lm, τ̂m, Bm, Cm) received from Ai. Sim-
ilarly, without the private key di, the CSP cannot obtain the
data m from the ciphertext tuple (Bm, Cm). For the inter-tag
τ̂m = gα

iγh2(m)yr generated by the BGN encryption, the CSP
possesses the secret p and can compute (τ̂m)p = (gp)α

iγh2(m).
Recall in Section 3.2, when the plaintext space is small, say
W � q, it is possible to compute the discrete logarithm with
Pollard’s lambda method. However, the parameters α, γ and
h2(m) belong to a large space. At this point, the discrete logarithm
becomes a hard problem. Thus, the CSP cannot obtain any private
information (i.e, the data m or the private parameters α and γ).

Then, we analyze that users lacking ownership cannot read
the data content from the encrypted data. For any user U in Di,
if U tries to obtain the data that does not own by himself, U can
choose a random numberH such that the bit length ofH is κ0−1.
Then, U generates an intra-tag τH =

(
dHi g

airH , grH
)

with the
private key di. After that, U interacts with Ai to execute the data
upload phase. If an identical hash value Tm∗ = h3(d

h2(m
∗)

i)
happens to be stored, i.e., H = h2(m

∗), then U can receive the
corresponding ciphertext Bm∗ . Accordingly, U can recover the
value Km∗ = e(gn+1, g)

βm∗ from Bm∗ by computing Eq. (7).
However, U does not possess the data m∗, and thus U cannot
generate the convergent key ckm∗ = h1(Km∗‖m∗). In fact, the
probability that a randomly selected H equals to h2(m∗) is very
small, i.e., P = 1

2κ0−1 . Thus, when the security parameter κ0 is
large enough, it is almost impossible to obtain Km∗ through such
attempts.

5.1.2 Preservation of message equality information

We prove that our scheme can protect the message equality
information from disclosure to some extent. Actually, in order to
achieve data deduplication, the message equality information has
to be leaked. Fortunately, our scheme can minimize such disclo-
sure. Specifically, during the intra-deduplication, before obtaining
the hash value Tm to compare, Eq. (2) has to be performed, i.e.,
d
h2(m)
i gairm/(grm)ai = d

h2(m)
i . Since only Ai possesses the

private key ai, based on the CDH problem (see Definition 1), only
it can compute Eq. (2). In other words, onlyAi knows the message
equality information in the domain Di. In the inter-deduplication,
to verify whether two inter-tags from different domains correspond
to the same data, it has to verify whether Eq. (5) holds, i.e.,
e(τ̂mk , gj)

p = e(τ̂mt , gi)
p. Since only the CSP possesses the

secret p, only the CSP can compute Eq. (5) to complete the
verification. That is, only the CSP knows the message equality
information in the cross-domain and other entities cannot know
whether the stored ciphertext and a given tag correspond to an
identical plaintext. Therefore, compared to most related works
where any entity can perform the duplicate verification to obtain
the message equality information, our scheme can reduce the
disclosure of such information as much as possible.

5.2 Data Integrity
After obtaining the data m′, it is very necessary for U to verify
data integrity to ensure the stored data m′ is not altered. The rea-
son is that deduplication techniques only keep one copy. Without
the assurance of data integrity, once the outsourced data is altered,
U cannot obtain the correct original data and even cannot be aware
of such change.

Our scheme allows users to easily verify data integrity. Specif-
ically, U generates the value Tm′ = h3(d

h2(m
′)

i). Recall that after
the data upload phase, U stores the hash value Tm = h3(d

h2(m)
i).

Then U checks whether Tm′ = Tm holds. As we consider hash
functions h2 and h3 as random oracles, if Tm′ 6= Tm, then
m′ 6= m, which implies that the downloaded data m′ is corrupted.

5.3 Brute-Force Attacks Resistance
In this section, we analyze that our scheme can prevent the
CSP, Ai or the malicious user (corrupted by the adversary) from
obtaining the content of the targeted ciphertext by launching brute-
force attacks.

5.3.1 Security against offline brute-force attacks
First, we consider an offline brute-force attack launched by the
CSP or Ai on the accessible information. Suppose the CSP
knows the background knowledge of the plaintext spaceM, and
wishes to know which data corresponds to the specific cipher-
text or tag. That is, for a stored data (i, τ̂m, Bm, Cm), where
τ̂m = d

h2(m)
i yr , Bm =

(
gβm , (ν ·

∏
k∈I gn+1−k)

βm
)

and
Cm = SKEckm(m), the CSP wishes to determine which data
mt ∈M generates them by launching offline brute-force attacks.

More specifically, with the secret key p, the CSP computes
(τ̂m)p to obtain dp·h2(m)

i . For each data mt ∈ M, the CSP first
computes the hash value h2(mt), and then wishes to generate
d
h2(mt)p
i to check whether dp·h2(mt)

i = d
p·h2(m)
i holds. If it

holds, then it implies that h2(m) = h2(mt), i.e., m = mt.
Unfortunately, the CSP cannot generate the valid value dh2(mt)p

i

without the private key di. Thus, the CSP cannot obtain the content
from the inter-tag by an offline brute-force attack. Moreover,
without the private key di, the CSP cannot obtain the value
Km = e(gn+1, g)

βm from Bm or public parameters due to the
(decisional) n-BDHE hard problem. Accordingly, the CSP cannot
generate the valid convergent key ckmt = h1(Km‖mt) without
Km. That is, the CSP can neither generate a valid ciphertext Cmt
nor decrypt Cm to judge whether mt = m or not. Therefore, the
CSP cannot determine which plaintext corresponds to the specific
encrypted data and tag by launching offline brute-force attacks.

In our threat model, Ai also wants to obtain the con-
tent of the stored data by launching offline brute-force attacks.
Specifically, for the obtained data (τm, Bm, Cm), where τm =

(d
h2(m)
i gairm , grm), Ai can use the private key ai to obtain

d
h2(m)
i from the intra-tag τm. Similarly, for each data mt ∈ M,

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:12:13 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2881147, IEEE
Transactions on Services Computing

9

Ai computes h2(mt) and tries to generate d
h2(mt)
i to check

whether dh2(mt)
i = d

h2(m)
i holds. However, it cannot generate

a valid dh2(mt)
i without di. Similar to the CSP, Ai cannot obtain

useful information from the encrypted data (Bm, Cm). Therefore,
Ai also cannot guess the content of the targeted ciphertext or tag
by launching offline brute-force attacks.

5.3.2 Security against online brute-force attacks
In addition to the CSP and Ai, a malicious user (corrupted by
the adversary) from the domain Di may launch an online brute-
force attack by repeatedly executing the data upload procedure.
For each data mt ∈ M, he/she generates the intra-tag τmt and
tries to upload mt to observe whether actual uploading of mt

has occurred. The online brute-force attack repeats this procedure
until the duplicate exists. That is, the malicious user can know the
content corresponding to the targeted ciphertext.

Although such an attack cannot be completely prevented
because the user has the private key, the actual effect of the attack
can be minimized. Similar to existing works associated with brute-
force attacks [5], [8], [11], we adopt the rate-limiting strategy to
mitigate such attack. Specifically, we use the bounded rate-limiting
approach of DupLESS [5]. In this approach, each Ai limits the
total number of data upload requests a user can make during a
fixed interval of time, e.g., Ai can set the maximum number of
times to perform Eq. (2). By doing so, we can greatly reduce the
capability of the malicious user to execute this online brute-force
attack.

6 PERFORMANCE EVALUATION

We evaluate the performance of our scheme in terms of com-
putational, communication and storage overheads. Moreover, we
give a comparison with Shin et al’s scheme [8] and Jiang et
al’s scheme [30]. Since these three schemes use a symmetric
encryption algorithm to generate the data ciphertext, we ignore
related overheads of the same part in the comparison.

6.1 Theoretical analysis

In this section, we discuss the theoretical analysis and give a
comparison of three schemes. Similarly to [8] and [30], we ignore
the costs of the KDS since it does not participate in data upload
and download phases. Besides, compared to the exponentiation
and pairing operations, the computational cost of a hash operation
is very fast, which can be ignored. In what follows, we describe
computational costs and communication overhead of uploading
and downloading the data m, and also show the related storage
costs.

6.1.1 Computational Cost
For the sake of simplicity, we use tm, tmt, te, tet and tp
to represent the computational cost of a multiplication in G, a
multiplication in GT , an exponentiation in G, an exponentiation
in GT and a pairing, respectively.

1. Computational cost of our scheme. In the phase of data up-
load, an intra-tag τm is first generated, which requires 3te + tm.
Then, Ai computes Eq. (2) and Tm to check the duplicate,
which costs te + tm. If the duplicate exists, then Ai returns
“duplication‖Bm∗” to the user. Otherwise, Ai computes the
inter-tag τ̂m, which costs te + tm. After that, the CSP receives

(i, Lm, τ̂m) and performs the inter-deduplication. Based on Algo-
rithm 2, the CSP first searches whether the value Lm is recorded.
The search complexity in DDT is O

(
logf |Sall|

)
, where |Sall|

denotes the number of stored data in the CSP. If the same value is
found, the CSP needs to verify whether Eq. (4) holds, which costs
2tp. Note that e(τ̂m, gj)p = e(τ̂m, g

p
j). Once the system is set up,

the value gpj , j = 1, . . . , n, can be computed offline by the CSP
and will remain unchanged. Thus, the cost of gpj can be ignored.
After finishing data deduplication, if the duplicate is not found, the
user encrypts m as (Bm, Cm). In addition to the cost of the Cm,
the additional costs are 2te + tet. Note that, Bm is computed as
Bm =

(
gβm , (ν ·

∏
k∈I gn+1−k)

βm
)
. Similarly, once the system

is set up by the KDS, the value (ν ·
∏
k∈I gn+1−k) is a constant.

Accordingly, (n− 1)te can be ignored. However, if the duplicate
is found, the user needs to recover the convergent key ckm∗ . The
crux is to obtain the value e(gn+1, g)

βm∗ by computing Eq. (7).
Likewise, for each user from Di, di ·

∏
k∈I,k 6=i gn+1−k+i can be

considered as a constant when the system is set up. Therefore, the
corresponding costs are tmt + 2tp.

In the phase of data download, it contains the decryption
and data verification. Since we ignore the cost of the symmetric
encryption algorithm, we only discuss data verification. With the
decrypted data m′, the user computes Tm′ = h3(d

h2(m
′)

i), and
then verifies the integrity by checking whether Tm′ = Tm holds.
Thus, the cost of data download is te.

2. Comparison of computational cost. In order to make a com-
parison, we list the computational costs of three schemes in Table
1. Note that, |Sall| and SDi | denote the number of encrypted data
stored in the CSP and from the Di, respectively. l is the bit length
of short hash used in [8] and usually around 5 ∼ 20 bits.

6.1.2 Communication Overhead
In order to facilitate the analysis, we use |G| and |GT | to denote
the bit length of an element in G and GT , respectively. |L|, |link|
and |i| denote the bit length of the data length Lm, the data link
linkm and the domain identifier i, respectively.

1. Communication overhead of our scheme. When a user U in
Di wants to upload data m, U first sends “upload‖(Lm, τm)”
to Ai, which costs |L| + 2|G| bits. If the duplicate is
found, then Ai returns “duplication‖Bm∗” with 2|G| bits in
length to U . If the duplicate is not found, then Ai sends
“upload‖(i, Lm, τ̂m)” with |i| + |L| + |G| bits in length to the
CSP for the further inter-deduplication. Then the CSP returns
“duplication‖linkm∗‖Bm∗” with |link| + 2|G| bits in length
to Ai when the duplicate is found. Otherwise, the CSP returns
“upload” to Ai. After the inter-deduplication, Ai either returns
“duplication‖Bm∗” with 2|G| bits in length or directly forwards
“upload” to U . If the received message is “upload”, then U sends
the encrypted data (Bm, Cm) to Ai. Except for the symmetric
ciphertext Cm, the additional overhead is 2|G| bits. Then, Ai
forwards (Bm, Cm) to the CSP to obtain the corresponding link
linkm, which costs |link|+ 2|G| bits to transmit. If the received
message is “duplication‖Bm∗”, U does not need to upload any
encrypted data. Finally, when the duplicate is found in the intra-
deduplication, total overheads of data upload require |L| + 4|G|
bits. If the duplicate is found in the inter-deduplication, then total
overheads are 7|G|+2|L|+ |i|+ |link| bits. Inversely, when the
duplicate is not found, total overheads are 7|G|+2|L|+|i|+|link|
bits.

For data download, U sends “download‖Tm” to Ai to obtain
the corresponding link linkm. Then, U downloads Cm from the

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:12:13 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2881147, IEEE
Transactions on Services Computing

10

TABLE 1: The comparison of computational cost for uploading or downloading one data.

Our scheme Shin et al’s scheme [8] Jiang et al’s scheme [30]

Upload

Operation costs
Duplicate in intra-dedup. 3te + 2tm + tmt + 2tp 4tm + 6te + 4tp −
Duplicate in inter-dedup. tmt + 3tm + 5te + 4tp 4tm + tmt + (n+ 7)te+ 2te + 2tp · log2 |Sall|
Duplicate does not exist 3tm + 7te + tet + 2tp

(
|Sall|
2l−1 + 5

)
tp 4te + tm + 2tp · log2 |Sall|

Search complexity
Duplicate in intra-dedup. O(1) O

(
log2 |SDi |

)
−

Duplicate in inter-dedup.
O

(
logf |Sall|

)
O

(
|Sall|
2l

)
O (log2 |Sall|)

Duplicate does not exist

Data download te tmt + 3tp te + tm

TABLE 2: The comparison of communication overhead for uploading or downloading one data.

Our scheme Shin et al’s scheme [8] Jiang et al’s scheme [30]

Upload
Duplicate in intra-dedup. |L|+ 4|G| 5|G|+ |i| −
Duplicate in inter-dedup.

7|G|+ 2|L|+ |i|+ |link| (n+ 5)|G|+ |GT |+ |i|+ l
2|G|+ |link|

Duplicate does not exist 4|G|+ κ0 + |link|
Data download |link|+ κ1 (n+ 1)|G|+ |GT |+ |i|+ |link| 2|G|+ κ0

TABLE 3: The comparison of storage cost.

Our scheme Shin et al’s scheme [8] Jiang et al’s scheme [30]

User 2κ1 + |label| 2|G| 2κ0 + |link|
The agent Ai 2|G|+ |link|+ κ1 − −

The CSP 3|G|+ |L|+ |i| (n+ 1)|G|+ |GT |+ |i|+ l 4|G|+ κ0

CSP. Recall that Tm is computed from the hash function h3 :
G → {0, 1}κ1 , where κ1 is the bit length of the convergent key.
Hence, except for the Cm, additional overheads of data download
require |link|+ κ1 bits.

2. Comparison of communication overhead. Table 2 presents
the communication overheads of three schemes. Note that κ0 is
the security parameter and κ1 is the bit length of the convergent
key (see Section 4.1). l is the bit length of short hash used in [8]
and usually around 5 ∼ 20 bits.

6.1.3 Storage Cost
In our scheme, after data upload, the user deletes the data m
and just stores (Tm, ckm, labelm), which needs 2κ1 + |label|
bits. After the intra-deduplication, if the duplicate exists, then
Ai does not need to store any data. Otherwise, Ai records
(Tm, Bm, linkm) with 2|G|+|link|+κ1 bits in length. Similarly,
if the duplication exists in the inter-deduplication, the CSP would
not store any data. Otherwise, the CSP stores the outsourced data
(i, Lm, τ̂m, Bm, Cm). Except for the symmetric ciphertext Cm,
the additional storage costs for the CSP are 3|G|+ |L|+ |i| bits.

Table 3 shows the storage costs of the three schemes. Note that
|label| represents the bit length of the data’s label.

6.2 Simulation analysis
In this section, we discuss the simulation analysis and give a com-
parison of three schemes. Specifically, we conduct experiments
with PBC [31] and OpenSSL [32] libraries running on a 2.6 GHz-
processor 2 GB-memory computing machine.

6.2.1 Simulation setup
In the simulation, we instantiate the bilinear pairing with type A1,
i.e., κ0 = 512 bits. We set the bit length of the convergent key
to be 256 bits, i.e., κ1 = 256 bits. We also set |i| = |L| = 64

bits, |link| = 2048 bits and |label| = 1024 bits. Note that,
since |link| represents the bit length of the filepath, 256-bytes is
sufficient to represent the usual path. Recall labelm is the label
of the data m, e.g., the name or feature used for identifying the
data m, thus 1024 bits are enough for the labelm. In addition, as
introduced in [8], l is usually around 5 ∼ 20 bits, thus we directly
set l = 20 bits.

For the setting of variables, suppose each user uploads or
downloads k data, wherein kψ data are duplicates and kψ · µ
out of kψ duplicates are found during the intra-deduplication.
Note that 0 6 ψ, µ 6 1. In what follows, we analyze how
the computational cost, communication overhead and storage cost
change as uploaded or downloaded data number k, duplication
ratio ψ, domain number n and the duplication ratio in the intra-
deduplication µ.

6.2.2 Simulation results

1. Computational cost. We depict the comparison of computa-
tional costs in Fig. 4. Specifically, Fig. 4(a)-4(e) show the variation
of operation cost in terms of k, n, ψ, and µ. Fig. 4(f)-4(h) show
the variation of the duplicate search complexity in terms of total
stored data number |Sall| and the order of the DDT f (or disjoint
subset number 2l in [8]).

From Fig. 4, we can see that the computational efficiency
of our scheme is much better than the other two schemes for
all variables. The main reasons are two aspects: the efficiency
of ciphertext calculations and the duplicate search complexity.
On the one hand, for ensuring that the outsourced data can
be correctly decrypted by users with ownership, our scheme
only contains a constant number of ciphertexts, i.e., a sym-
metric ciphertext Cm and a key-encapsulated ciphertext Bm
with two elements in G. However, in the scheme [8], except
for the symmetric ciphertext, the key-encapsulated ciphertexts

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:12:13 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2881147, IEEE
Transactions on Services Computing

11

100 200 300 400 500 600 700 800 900 1000

The number of uploaded data (k)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
o
m

p
u
ta

ti
o
n
a
l
c
o
s
t
(s

)
Our scheme
Shin et al's scheme
Jiang et al's scheme

(a) Data upload.

10 20 30 40 50 60 70 80 90 100

The number of domains (n)

0

500

1000

1500

2000

2500

3000

C
o
m

p
u
ta

ti
o
n
a
l
c
o
s
t
(s

)

Our scheme
Shin et al's scheme
Jiang et al's scheme

(b) Data upload.

0 0.2 0.4 0.6 0.8 1

The duplication ratio (ψ)

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

C
o
m

p
u
ta

ti
o
n
a
l
c
o
s
t
(s

)

Shin et al's scheme

0 0.5 1
0

100

200

300

400

500

Our scheme
Jiang et al's scheme

(c) Data upload.

0 0.2 0.4 0.6 0.8 1

The duplication ratio in intra-deduplication (µ)

0

500

1000

1500

2000

2500

3000

3500

C
o
m

p
u
ta

ti
o
n
a
l
c
o
s
t
(s

)

Shin et al's scheme
Jiang et al's scheme

0 0.5 1
90

100

110

120

130

Our scheme

(d) Data upload.

100 200 300 400 500 600 700 800 900 1000

The number of downloaded data (k)

0

10

20

30

40

50

60

70

80

90

100

C
o
m

p
u
ta

ti
o
n
a
l
c
o
s
t
(s

)

Our scheme
Shin et al's scheme
Jiang et al's scheme

(e) Data download.

2000 4000 6000 8000 10000 12000 14000 16000

The number of stored data in the CSP (|S
all

|)

1

2

3

4

5

6

7

8

9
S

e
a
rc

h
 c

o
m

p
le

x
it
y

Our scheme
Shin et al's scheme

(f) Intra-deduplication.

2000 4000 6000 8000 10000 12000 14000 16000

The number of stored data in the CSP (|S
all

|)

0

10

20

30

40

50

60

S
e
a
rc

h
 c

o
m

p
le

x
it
y

Our scheme
Shin et al's scheme
Jiang et al's scheme

(g) Inter-deduplication.

100 150 200 250 300 350 400 450 500

The value of f or 2l

10

20

30

40

50

60

70

80

90

S
e
a
rc

h
 c

o
m

p
le

x
it
y

Shin et al's scheme
Jiang et al's scheme

100 200 300 400 500
1.4

1.5

1.6

1.7

1.8

1.9

2

Our scheme

(h) Inter-deduplication.

Fig. 4: The comparison of computational cost.

{e(H(m)
s
, g)r, (g

1
y1)s, . . . , (g

1
yn)s} contain one element in GT

and n elements in G, which increases linearly with n. Thus, our
scheme can significantly reduce the computational costs of data
encryption, as shown in Fig. 4(a)-4(d). Note that, in the scheme
[30], it directly uses the hash value of the data m as the main
key to obtain the symmetric key. In other words, as long as the
user has h(m), the symmetric key selected by the initial uploader
can be obtained correctly. Thus, this scheme would not introduce
a large number of additional ciphertexts as in the scheme [8].
However, it is clear that this scheme is not resistant to brute-force
attacks. On the other hand, in the intra-deduplication, our scheme
constructs a hash table to find the duplicate, where the search
complexity is O(1). But the scheme [8] uses a binary search tree
to store the tag, where the search complexity is O(log2 |SDi |).
For convenience, we directly set |SDi | = |Sall|/n. Obviously,
the search complexity of our scheme is more efficient than the
scheme [8], as shown in Fig. 4(f). For the inter-deduplication,
our scheme constructs the DDT based on the B+ tree, where
the search complexity is O

(
logf |Sall|

)
. The scheme [30] uses

the binary search tree to find the duplicate, where the search
complexity is O (log2 |Sall|). However, the scheme [8] introduces
a short hash to divide the set Sall into 2l subsets, and thus the
search complexity is sub-linear, i.e., O

(
|Sall|/2l

)
. In general, the

logarithmic search complexity is more efficient than the sub-linear
complexity, while the complexity of the B+ tree is more efficient
than the binary search tree. Therefore, the search complexity of
our scheme is more efficient than the other two, as shown in Fig.
4(g) and 4(h).

For data download, the costs of our scheme and Jiang et al’s
scheme [30] are less than the Shin’s scheme [8] for k, as shown in
Fig. 4(e). The reason is that our scheme achieves data verification
by computing Tm∗ = h3(d

h2(m
∗)

i). However, the scheme [8]
needs to verify whether e(g, tm) = e(H(m∗), gxi) holds. Note

that, the scheme [30] does not consider data verification. The
resulting costs are related to the recovery of the symmetric key.

2. Communication overhead. In Fig. 5, we plot the comparison
of communication overheads in terms of k, n, ψ, and µ. It
is shown that our scheme significantly reduces communication
overheads compared with the scheme [8]. Similar to the analysis
of computational cost, the main reason is that our scheme only
sends a constant number of ciphertexts to the CSP. However,
for the scheme [8], the number of uploaded or downloaded
ciphertexts is linear with n, which will cause more communication
overheads, especially when n increases, as shown in Fig. 5(b). The
communication overhead of our scheme is slightly larger than the
scheme [30]. The reason is that we introduce the agent between
users and the CSP to perform the intra-deduplication and forward
the received messages to the CSP or users, which will increase
communication overheads.

3. Storage cost. Fig. 6 shows the comparison of storage costs
for these three schemes in terms of k, n, ψ, and µ. It is shown that
our scheme reduces storage costs compared with the scheme [8].
The main reason is that the number of ciphertexts generated in our
scheme is constant. Note that for the convenience of comparison,
we summarize the storage cost of Ai to the CSP for analysis. Due
to the introduction of the agent, the storage cost of our scheme
is slightly larger than the scheme [30], as shown in Fig. 6(b)-
6(d). But, this process helps greatly improve the efficiency of
the duplicate search if the data come from the same domain, as
shown in Fig. 4. More importantly, the agent can maintain a rating-
limiting strategy to resist the online brute-force attacks launched
by malicious users.

From the above analyses, our scheme is indeed efficient in
terms of computational, communication and storage overheads
compared with the up-to-date works, which shows the signifi-
cance and practical potential of our scheme to support big data

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:12:13 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2881147, IEEE
Transactions on Services Computing

12

100 200 300 400 500 600 700 800 900 1000

The number of uploaded & downloaded data (k)

0

1

2

3

4

5

6

7

C
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

M
B

)

Our scheme (upload)
Shin et al's scheme (upload)
Jiang et al's scheme (upload)
Our scheme (download)
Shin et al's scheme (download)
Jiang et al's scheme (download)

(a) Overhead of upload & download.

10 20 30 40 50 60 70 80 90 100

The number of domains (n)

0

1

2

3

4

5

6

7

C
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

M
B

)

Shin et al's scheme (upload)
Shin et al's scheme (download)

20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

Our scheme (upload)
Jiang et al's scheme (upload)
Our scheme (download)
Jiang et al's scheme (download)

(b) Overhead of upload & download.

0 0.2 0.4 0.6 0.8 1

The duplication ratio (ψ)

0

0.5

1

1.5

2

2.5

3

3.5

C
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

M
B

)

Our scheme
Shin et al's scheme
Jiang et al's scheme

(c) Overhead of upload.

0 0.2 0.4 0.6 0.8 1

The duplication ratio in intra-deduplication (µ)

0

0.5

1

1.5

2

2.5

3

3.5

C
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

M
B

)

Our scheme
Shin et al's scheme
Jiang et al's scheme

(d) Overhead of upload.

Fig. 5: The comparison of communication overhead.

100 200 300 400 500 600 700 800 900 1000

The number of uploaded data (k)

0

0.5

1

1.5

2

2.5

3

3.5

S
to

ra
g
e
 c

o
s
t
(M

B
)

Our scheme (user)
Shin et al's scheme (user)
Jiang et al's scheme (user)
Our scheme (the CSP and agent)
Shin et al's scheme (CSP)
Jiang et al's scheme (CSP)

(a) Storage cost of the CSP & user.

10 20 30 40 50 60 70 80 90 100

The number of domains (n)

0

0.5

1

1.5

2

2.5

3

3.5

S
to

ra
g
e
 c

o
s
t
(M

B
)

Our scheme
Shin et al's scheme
Jiang et al's scheme

(b) Storage cost of the CSP.

0 0.2 0.4 0.6 0.8 1

The duplication ratio (ψ)

0

0.5

1

1.5

2

2.5

3

3.5

S
to

ra
g
e
 c

o
s
t
(M

B
)

Our scheme
Shin et al's scheme
Jiang et al's scheme

(c) Storage cost of the CSP.

0 0.2 0.4 0.6 0.8 1

The duplication ratio in intra-deduplication (µ)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
to

ra
g
e
 c

o
s
t
(M

B
)

Our scheme
Shin et al's scheme
Jiang et al's scheme

(d) Storage cost of the CSP.

Fig. 6: The comparison of storage cost.

deduplication and storage.

7 RELATED WORK

Secure data deduplication technique, as it can eliminate redundant
data while achieving data confidentiality, has been widely devel-
oped by the research community [12]. The convergent encryption
(CE) was the first solution that can achieve deduplication over
encrypted data [3], [33]. In the CE, data is encrypted by its
hash value and the corresponding tag is produced by hashing the
generated ciphertext. Clearly, when different users independently
encrypt the same data, they will generate the same ciphertexts
and tags which can be easily deduplicated. However, the precise
security guarantee of the CE was never fully proven or even
stated. After that, Bellare et al. [4] formalized the CE a new
cryptographic primitive called message-locked encryption (MLE)
and gave a semantic security proof for unpredictable messages.
Unfortunately, for predictable messages, the MLE (as well as the
CE) is vulnerable to brute-force attacks due to its deterministic
property [5].

In order to resist brute-force attacks, Bellare et al. [5] firstly
proposed a server-aided secure deduplication scheme, called Du-
pLESS, based on the RSA-OPRF (Oblivious Pseudo-Random
Function) protocol [34]. In DupLESS, each user interacts with a
centralized key server (KS) to obtain the corresponding convergent
key for each uploaded data. Obviously, this centralized-KS should
be always online to response key generation requests sent from
users in the system. Thus, it is very vulnerable to the single
point of failure, i.e., once the KS is compromised, the security
of the DupLESS totally degrades into the MLE algorithm. To
deal with this issue, Miao et al. [6] presented a multi-server-aided

secure deduplication scheme based on a threshold blind signature
[35]. In this scheme, each user interacts with at least a threshold
number of KSs to generate a convergent key. Besides, Duan et al.
[7] introduced a distributed key generation protocol based on the
RSA threshold signature [36]. Unlike the scheme proposed in [6],
this scheme employed a trusted dealer to distribute key shares for
online users in the system and each user interacts with at least a
threshold number of online users to acquire a convergent key. The
trusted dealer plays a similar role to that of the KS in DupLESS,
but it participates only in the system setup phase. In both schemes,
as long as the number of compromised KSs or online users
does not exceed the threshold, the security can be preserved.
Unfortunately, both two schemes only can deal with the intra-
deduplication, i.e., they can only remove the redundancy among
outsourced data that correspond to the same KSs or users (i.e., the
same domain in our system). In order to extend the deduplication
into the cross-domain, Shin et al. [8] recently constructed an inter-
deduplication scheme based on the Boldyreva’s blind signature
[37]. In this scheme, even private keys chosen by different KSs
are different, the CSP can still eliminate the redundancy among
outsourced data from different domains. However, since different
outsourced data are encrypted by different private keys, in order
to ensure these data can be correctly decrypted by users with the
ownership, for each uploaded data, the number of corresponding
ciphertexts is linear with the number of domains. Thus, massive
computational, communication and storage overheads are incurred
when the number of domains explodes.

In addition to the semantic security of encrypted data and
tags, the message equality information of outsourced data (i.e.,
the information whether two different ciphertexts correspond to an

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:12:13 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2881147, IEEE
Transactions on Services Computing

13

identical plaintext) needs to be protected as much as possible. For
example, Stanek et al. [9] added a trusted third party, index repos-
itory service (IRS), to complete the duplication judgment. That is,
only the IRS can know the message equality information. Thus,
this scheme can prevent other entities from obtaining the message
equality information. However, the assumption of a trusted IRS
is too strong to be accepted in practice. Furthermore, the IRS
seems vulnerable because it should be always online to deal with
data upload requests. Accordingly, this scheme is vulnerable to
offline brute-force attacks when the IRS is compromised [11].
To improve these disadvantages, Yang et al. [10] proposed an
efficient deduplication scheme that achieves data confidentiality
while resisting brute-force attacks. Without requiring an additional
trusted server in this scheme, any adversary excluding the CSP
cannot know the message equality information, i.e., only the
CSP can decide whether two given tags from different domains
correspond to the same data or not. However, this scheme only
can deduplicate for outsourced data from two different domains.

8 CONCLUSION

In this paper, we have proposed an efficient and privacy-preserving
big data deduplication scheme for a two-level multi-domain archi-
tecture. Specifically, our scheme can achieve the semantic security
of encrypted data while ensuring that the outsourced encrypted
data can be correctly decrypted by users with ownership by gen-
erating a constant number of ciphertexts. Besides, only the CSP
(the agent) can decide whether two given random inter-tags from
different domains (intra-tags from the same domain) correspond
to the same data or not, which minimizes the disclosure of the
message equality information. Detailed security analyses demon-
strate that our scheme can achieve data confidentiality and data
integrity while resisting brute-force attacks. Furthermore, exten-
sive performance evaluations show that our scheme outperforms
the existing competing schemes, especially the computational cost
and the time complexity of the duplicate search.

Future research includes extending the proposed scheme to
achieve the ownership management and revocation because data
modification or deletion operations are often requested by users.
Moreover, since data deduplication techniques keep only one copy
of the data, outsourced data after deduplication is vulnerable
to data loss or corruption. Accordingly, future research agenda
will also include extending the proposed scheme to address the
reliability of outsourced data.

REFERENCES

[1] D. T. Meyer and W. J. Bolosky, “A study of practical deduplication,”
TOS, vol. 7, no. 4, pp. 14:1–14:20, 2012.

[2] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud
services: Deduplication in cloud storage,” IEEE Security & Privacy,
vol. 8, no. 6, pp. 40–47, 2010.

[3] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed file
system,” in ICDCS, 2002, pp. 617–624.

[4] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked encryp-
tion and secure deduplication,” in Advances in Cryptology - EURO-
CRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30,
2013. Proceedings, 2013, pp. 296–312.

[5] S. Keelveedhi, M. Bellare, and T. Ristenpart, “Dupless: Server-aided
encryption for deduplicated storage,” in Proceedings of the 22th USENIX
Security Symposium, Washington, DC, USA, August 14-16, 2013, 2013,
pp. 179–194.

[6] M. Miao, J. Wang, H. Li, and X. Chen, “Secure multi-server-aided data
deduplication in cloud computing,” Pervasive and Mobile Computing,
vol. 24, pp. 129–137, 2015.

[7] Y. Duan, “Distributed key generation for encrypted deduplication:
Achieving the strongest privacy,” in Proceedings of the 6th edition of the
ACM Workshop on Cloud Computing Security, CCSW ’14, Scottsdale,
Arizona, USA, November 7, 2014, 2014, pp. 57–68.

[8] Y. Shin, D. Koo, J. Yun, and J. Hur, “Decentralized server-aided encryp-
tion for secure deduplication in cloud storage,” IEEE Transactions on
Services Computing, vol. PP, no. 99, pp. 1–1, 2017.

[9] J. Stanek and L. Kencl, “Enhanced secure thresholded data deduplication
scheme for cloud storage,” IEEE Transactions on Dependable and Secure
Computing, vol. PP, no. 99, pp. 1–1, 2016.

[10] X. Yang, R. Lu, K.-K. R. Choo, F. Yin, and X. Tang, “Achieving efficient
and privacy-preserving cross-domain big data deduplication in cloud,”
IEEE Transactions on Big Data, vol. PP, no. 99, pp. 1–1, 2017.

[11] J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication of encrypted
data without additional independent servers,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-6, 2015, 2015, pp. 874–885.

[12] Y. Shin, D. Koo, and J. Hur, “A survey of secure data deduplication
schemes for cloud storage systems,” ACM Comput. Surv., vol. 49, no. 4,
pp. 74:1–74:38, 2017.

[13] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Theory of Cryptography, 4th Theory of Cryptography
Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24,
2007, Proceedings, 2007, pp. 535–554.

[14] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-dnf formulas on
ciphertexts,” in Theory of Cryptography, Second Theory of Cryptography
Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005,
Proceedings, 2005, pp. 325–341.

[15] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 3rd
Edition. Addison-Wesley-Longman, 2000.

[16] S. Jiang, T. Jiang, and L. Wang, “Secure and efficient cloud data dedu-
plication with ownership management,” IEEE Transactions on Services
Computing, vol. PP, no. 99, pp. 1–1, 2017.

[17] C. Zuo, J. Shao, J. K. Liu, G. Wei, and Y. Ling, “Fine-grained two-factor
protection mechanism for data sharing in cloud storage,” IEEE Trans.
Information Forensics and Security, vol. 13, no. 1, pp. 186–196, 2018.

[18] J. Li, J. Li, D. Xie, and Z. Cai, “Secure auditing and deduplicating data
in cloud,” IEEE Trans. Computers, vol. 65, no. 8, pp. 2386–2396, 2016.

[19] R. S. Kumar and A. Saxena, “Data integrity proofs in cloud storage,”
in Third International Conference on Communication Systems and Net-
works, COMSNETS 2011, Bangalore, India, January 4-8, 2011, 2011,
pp. 1–4.

[20] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public
auditing for data storage security in cloud computing,” in INFOCOM
2010. 29th IEEE International Conference on Computer Communica-
tions, Joint Conference of the IEEE Computer and Communications
Societies, 15-19 March 2010, San Diego, CA, USA, 2010, pp. 525–533.

[21] Z. Yan, W. Ding, X. Yu, H. Zhu, and R. H. Deng, “Deduplication on
encrypted big data in cloud,” IEEE Trans. Big Data, vol. 2, no. 2, pp.
138–150, 2016.

[22] D. Boneh, X. Boyen, and E. Goh, “Hierarchical identity based encryption
with constant size ciphertext,” in Advances in Cryptology - EUROCRYPT
2005, 24th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005,
Proceedings, 2005, pp. 440–456.

[23] V. Shoup, “Lower bounds for discrete logarithms and related problems,”
in Advances in Cryptology - EUROCRYPT ’97, International Conference
on the Theory and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding, 1997, pp. 256–266.

[24] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

[26] D. Comer, “The ubiquitous b-tree,” ACM Comput. Surv., vol. 11, no. 2,
pp. 121–137, 1979.

[27] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast
encryption with short ciphertexts and private keys,” in Advances in
Cryptology - CRYPTO 2005: 25th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 14-18, 2005, Pro-
ceedings, 2005, pp. 258–275.

[28] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second
Edition. CRC Press, 2014.

[29] S. Goldwasser and S. Micali, “Probabilistic encryption and how to play
mental poker keeping secret all partial information,” in Proceedings of

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:12:13 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2881147, IEEE
Transactions on Services Computing

14

the 14th Annual ACM Symposium on Theory of Computing, May 5-7,
1982, San Francisco, California, USA, 1982, pp. 365–377.

[30] T. Jiang, X. Chen, Q. Wu, J. Ma, W. Susilo, and W. Lou, “Secure and
efficient cloud data deduplication with randomized tag,” IEEE Trans.
Information Forensics and Security, vol. 12, no. 3, pp. 532–543, 2017.

[31] B. Lynn, “Pbc library,” https://crypto.stanford.edu/pbc/, 2006.
[32] “Openssl,” https://www.openssl.org/.
[33] M. W. Storer, K. M. Greenan, D. D. E. Long, and E. L. Miller, “Secure

data deduplication,” in Proceedings of the 2008 ACM Workshop On
Storage Security And Survivability, StorageSS 2008, Alexandria, VA,
USA, October 31, 2008, 2008, pp. 1–10.

[34] M. Naor and O. Reingold, “Number-theoretic constructions of efficient
pseudo-random functions,” J. ACM, vol. 51, no. 2, pp. 231–262, 2004.

[35] D. L. Vo, F. Zhang, and K. Kim, “A new threshold blind signature scheme
from pairings,” in Proceedings of the Symposium on Cryptography and
Information Security, 2003, pp. 233–238.

[36] V. Shoup, “Practical threshold signatures,” in Advances in Cryptology
- EUROCRYPT 2000, International Conference on the Theory and
Application of Cryptographic Techniques, Bruges, Belgium, May 14-18,
2000, Proceeding, 2000, pp. 207–220.

[37] A. Boldyreva, “Threshold signatures, multisignatures and blind signa-
tures based on the gap-diffie-hellman-group signature scheme,” in Public
Key Cryptography - PKC 2003, 6th International Workshop on Theory
and Practice in Public Key Cryptography, Miami, FL, USA, January 6-8,
2003, Proceedings, 2003, pp. 31–46.

Xue Yang received the B.S. degree in informa-
tion security from the Southwest Jiaotong Uni-
versity, Chengdu, China, in 2012. She is cur-
rently working towards a Ph.D. degree in infor-
mation and communication engineering, South-
west Jiaotong University. Her research interests
include big data security and privacy, applied
cryptography and network security.

Rongxing Lu (S’09-M’10-SM’15) received the
Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Water-
loo, Canada, in 2012. He was a PostDoctoral
Fellow with the University of Waterloo from 2012
to 2013. He was an Assistant Professor with
the School of Electrical and Electronic Engineer-
ing, Nanyang Technological University, Singa-
pore, from 2013 to 2016. He has been an As-
sistant Professor with the Faculty of Computer
Science, University of New Brunswick, Canada,

since 2016. His research interests include applied cryptography, privacy
enhancing technologies, and IoT-Big Data security and privacy. He
currently serves as the Secretary of the IEEE ComSoc CIS-TC. He is
currently a Senior Member of the IEEE Communications Society. He
received the most prestigious Governor General’s Gold Medal and the
8th IEEE Communications Society (ComSoc) Asia Pacific Outstanding
Young Researcher Award, in 2013.

JUN SHAO received the Ph.D. degree from the
Department of Computer Science and Engineer-
ing at Shanghai Jiao Tong University, Shanghai,
China in 2008. He was a postdoc in the School of
Information Sciences and Technology at Penn-
sylvania State University, USA from 2008 to
2010. He is currently a professor of the School of
Computer Science and Information Engineering
at Zhejiang Gongshang University, Hangzhou,
China. His research interests include network
security and applied cryptography.

Xiaohu Tang (M’04) received the Ph.D. degree
in electronic engineering from the Southwest
Jiaotong University, Chengdu, China, in 2001.
From 2003 to 2004, he was a research associate
in the Department of Electrical and Electronic
Engineering, Hong Kong University of Science
and Technology. From 2007 to 2008, he was a
visiting professor at University of Ulm, Germany.
Since 2001, he has been in the School of In-
formation Science and Technology, Southwest
Jiaotong University, where he is currently a pro-

fessor. His research interests include coding theory, network security,
distributed storage and information processing for big data.

Dr. Tang was the recipient of the National excellent Doctoral Dis-
sertation award in 2003 (China), the Humboldt Research Fellowship in
2007 (Germany), and the Outstanding Young Scientist Award by NSFC
in 2013 (China). He serves as Associate Editors for several journals
including IEEE TRANSACTIONS ON INFORMATION THEORY and IEICE
Trans on Fundamentals, and served on a number of technical program
committees of conferences.

ALI A. GHORBANI (SM’–) has held a variety of
positions in academia for the past 35 years. He
has been the Dean of the Faculty of Computer
Science since 2008. He is currently the Canada
Research Chair (Tier 1) in Cybersecurity. He is
also the Director of the Canadian Institute for Cy-
bersecurity. He has developed a number of tech-
nologies that have been adopted by high-tech
companies. He co-founded two startups, Sen-
trant and EyesOver in 2013 and 2015, respec-
tively. He is the Co-Inventor on three awarded

patents in the area of network security and web intelligence and has
published over 200 peer-reviewed articles during his career. He has
supervised over 160 research associates, post-doctoral fellows, and
graduate and undergraduate students during his career. His book, In-
trusion Detection and Prevention Systems: Concepts and Techniques,
(Springer, 2010). Since 2010, he has obtained over 10M to fund six
large multi-project research initiatives. He was twice one of the three
finalists for the Special Recognition Award at the 2013 and 2016 New
Brunswick KIRA Award for the knowledge industry. In 2007, he received
the University of New Brunswick’s Research Scholar Award. He is the
Co-Editor-In-Chief of Computational Intelligence Journal.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:12:13 UTC from IEEE Xplore. Restrictions apply.

